

Manx Precision Optics

CATALOGUE

CONTENTS

ABOUT US / HOW TO CONTACT US 3
BK7 SUBSTRATES 4
FUSED SILICA SUBSTRATES 5
SPHERICAL SUBSTRATES 6
REFERENCE FLATS 7
COATED SUBSTRATES - INTRODUCTION 9
AR-COATED WINDOWS 10
LASER LINE MIRRORS O이NCIDENCE 12
LASER LINE MIRRORS 45이NCIDENCE 14
METAL COATED MIRRORS 16
BEAMSPLITTER COATINGS 17
HIGH LIDT CUBE POLARISERS 18
WAVEPLATES 20
COMPONENTS FOR ULTRAFAST LASERS 21
ROOF MIRRORS 23
ETALONS 24
TECHNICAL INFORMATION 25
QUALITY POLICY 31
\square \square

ABOUT US

Manx Precision Optics Ltd. ('MPO') is a family owned manufacturer of high precision optics.

Based in the Isle of Man, the company was founded in 2013. MPO's ISO 9001:2008 certified manufacturing process covers the full range of optical manufacture from grinding and polishing to coating (ebeam and sputtering) and assembly.

The company's modern manufacturing facility is based in a high-tech industrial park that is owned by the Isle of Man Government.

Its highly experienced workforce enables MPO to offer tailor made solutions to a wide range of applications along its wide range of off the shelf products.

HOW TO CONTACT US

Registered Office and Administration:

Manx Precision Optics Ltd.
4 Albert Street
Douglas
Isle of Man IM1 2QA
British Isles
Manufacturing Facility:
Manx Precision Optics Ltd.
Units 11 \& 12
The Freeport
Ballasalla
Isle of Man IM9 2AP
British Isles

Official Distributor BeNeLux

Te Lintelo Systems BV

www.tlsbv.nl | contact@tlsbv.nl | + 31316340804

BK7 SUBSTRATES

Mirror specifications:
Diameter Tolerance: +0/-0.25mm Thickness Tolerance: +/-0.25mm, front surface: $\lambda / 10$ flatness, 10-5 scratch-dig, rear surface: inspection polish, better than 5 arc min parallel,

Window specifications:
Diameter Tolerance: +0/-0.25mm Thickness Tolerance: $+/-0.25 \mathrm{~mm}$, $\lambda / 10$ transmitted wavefront distortion, both sides 10-5 scratch-dig, better than 10 arc sec parallel

Wedged Optics have a 30arc min (+/-5 arc min), thickness specified for thick side

BK7 MIRROR SUBSTRATES
DIAMETER (D)
THICKNESS (T)

BK7-FMR-12.7-6.35
BK7-FMR-25.4-6.35
BK7-FMR-38.1-9.52
BK7-FMR-50.8-9.52
BK7-FMR-76.2-12.7
BK7-FMR-101.6-12.7
BK7-FMR-152.4-25.4
BK7-WMR-25.4-6.35-30MIN
BK7-WMR-50.8-9.52-30MIN

BK7 WINDOW SUBSTRATES

BK7-FWD-12.7-6.35
BK7-FWD-25.4-6.35
BK7-FWD-38.1-9.52
BK7-FWD-50.8-9.52
BK7-FWD-76.2-12.7
BK7-FWD-101.6-12.7
BK7-FWD-152.4-25.4
BK7-WWD-25.4-6.35-30MIN
BK7-WWD-50.8-9.52-30MIN
12.7 mm
25.4 mm
38.1 mm
50.8 mm
76.2 mm
101.6 mm
152.4 mm
25.4 mm
50.8 mm

DIAMETER (D)
12.7 mm
25.4 mm
38.1 mm
50.8 mm
76.2 mm
101.6 mm
152.4 mm
25.4 mm
50.8 mm
6.35 mm
6.35 mm
9.52 mm
9.52 mm
12.7 mm
12.7 mm
25.4 mm
6.35 mm
9.52 mm

THICKNESS (T)
6.35 mm
6.35 mm
9.52 mm
9.52 mm
12.7 mm
12.7 mm
25.4 mm
6.35 mm
9.52 mm

Other sizes and specifications are available on request - please contact us.

FUSED SILICA SUBSTRATES

Mirror specifications:
Diameter Tolerance: +0/-0.25mm Thickness Tolerance: +/-0.25mm, front surface: $\lambda / 10$ flatness, 10-5 scratch-dig, rear surface: inspection polish, better than 5 arc min parallel,

Window specifications:
Diameter Tolerance: +0/-0.25mm Thickness Tolerance: +/-0.25mm, $\lambda / 10$ transmitted wavefront distortion, both sides 10-5 scratch-dig, better than 10 arc sec parallel

Wedged Optics have a 30arc min (+/-5 arc min), thickness specified for thick side

FUSED SILICA MIRROR SUBSTRATES
DIAMETER (D)
THICKNESS (T)

FS-FMR-12.7-6.35	12.7 mm	6.35 mm
FS-FMR-25.4-6.35	25.4 mm	6.35 mm
FS-FMR-38.1-9.52	38.1 mm	9.52 mm
FS-FMR-50.8-9.52	50.8 mm	9.52 mm
FS-FMR-76.2-12.7	76.2 mm	12.7 mm
FS-FMR-101.6-12.7	101.6 mm	12.7 mm
FS-FMR-152.4-25.4	152.4 mm	25.4 mm
FWMR-25.4-6.35-30MIN	25.4 mm	6.35 mm
-WMR-50.8-9.52-30MIN	50.8 mm	9.52 mm

FUSED SILICA WINDOW SUBSTRATES
DIAMETER (D)
THICKNESS (T)

FS-FWD-12.7-6.35	12.7 mm	6.35 mm
FS-FWD-25.4-6.35	25.4 mm	6.35 mm
FS-FWD-38.1-9.52	38.1 mm	9.52 mm
FS-FWD-50.8-9.52	50.8 mm	9.52 mm
FS-FWD-76.2-12.7	76.2 mm	12.7 mm
FS-FWD-101.6-12.7	101.6 mm	12.7 mm
FS-FWD-152.4-25.4	152.4 mm	25.4 mm
FS-WWD-25.4-6.35-30MIN	25.4 mm	6.35 mm
FS-WWD-50.8-9.52-3OMIN	50.8 mm	9.52 mm

Other sizes and specifications are available on request - please contact us.

SPHERICAL SUBSTRATES

T -
Mirror specifications:
Diameter Tolerance: +0/-0.25mm Thickness Tolerance: +/-0.25mm, front surface: $\lambda / 10$ surface figure, 10-5 scratch-dig, rear surface: inspection polish, ROC tolerance +/-1\%

Lens specifications:
Diameter Tolerance: +0/-0.25mm Thickness Tolerance: +/-0.25mm, $\lambda / 10$ surface figure, both sides $10-5$ scratch-dig, focal length tolerance: +/-0.5\%

Plano- Concave substrates:
25.4 mm diameter: 6.35 mm edge thickness

Plano- Convex substrates:
25.4 mm diameter: 6.35 mm centre thickness

FUSED SILICA MIRROR SUBSTRATES
DIAMETER (D) RADIUS OF CURVATURE
FS-SMR-25.4-6.35-1.OM-CC
FS-SMR-25.4-6.35-1.5M-CC
FS-SMR-25.4-6.35-3.OM-CC
FS-SMR-25.4-6.35-5.OM-CC
FUSED SILICA LENSES
PLANO - CONVEX

FS-SPL-25.4-6.35-46.5-CX
FS-SPL-25.4-6.35-56.6-CX
FS-SPL-25.4-6.35-68.3-CX
FS-SPL-25.4-6.35-112.4-CX
FS-SPL-25.4-6.35-135.6-CX
FS-SPL-25.4-6.35-226.9-CX
FS-SPL-25.4-6.35-454.4-CX

BK7 LENSES PLANO - CONVEX

BK7-SPL-25.4-6.35-46.5-CX
BK7-SPL-25.4-6.35-112.4-CX
BK7-SPL-25.4-6.35-226.9-CX
BK7-SPL-25.4-6.35-454.4-CX
25.4 mm
25.4 mm
25.4 mm
25.4 mm

DIAMETER (D)
25.4 mm

25.4 mm	125 mm
25.4 mm	150 mm

$25.4 \mathrm{~mm} \quad 250 \mathrm{~mm}$
25.4 mm
25.4 mm
25.4 mm

DIAMETER (D)

25.4 mm	90 mm
25.4 mm	220 mm
25.4 mm	450 mm
25.4 mm	900 mm

Other sizes and specifications are available on request - please contact us.

REFERENCE FLATS

Specifications:
Diameter Tolerance: +0/-0.25mm Thickness
Tolerance: +/-0.25mm, front surface: $\lambda / 20$ flatness, 20-10 scratch-dig, rear surface: inspection polish, better than 5 arc min parallel, uncoated, supplied in wooden box

PART NUMBER MATERIAL DIAMETER (D) THICKNESS (T)

ZER-REF1-25.0-12.0-L/20	Zerodur	25.0 mm	12.0 mm
ZER-REF1-50.0-15.0-L/20	Zerodur	50.0 mm	15.0 mm
ZER-REF1-100.0-19.0-L/20	Zerodur	100.0 mm	19.0 mm
FS-REF1-25.0-12.0-L/20	Fused Silica	25.0 mm	12.0 mm
FS-REF1-50.0-15.0-L/20	Fused Silica	50.0 mm	15.0 mm
FS-REF1-100.0-19.0-L/20	Fused Silica	100.0 mm	19.0 mm

Other sizes and specifications are available on request - please contact us.

COATED SUBSTRATES-INTRODUCTION

The following pages list a large number of coated substrates that are available either from stock or at short notice. Items listed in the catalogue, however, only represent a small proportion of coated items that Manx Precision Optics Ltd. carries in stock. Therefore, if you cannot find what you are looking for, please do not hesitate to contact us. We can check the availability of any item via our ERP system while you wait.

Being a family-owned manufacturer, we treat all our customers as individuals and will always ensure that we find the best and most cost-efficient solution for your application.

To ensure consistent quality and being able to respond quickly to customer requirements, Manx Precision Optics Ltd. has a very high manufacturing depth, shaping, grinding, polishing, coating and assembling optics in-house. Our manufacturing process is fully ISO9001:2008 certified.

Laser-induced Damage Threshold (LIDT)

All optics in this catalogue are designed to withstand high laser power and are regularly used in some of the world's most powerful laser systems.

The achievable LIDT for optical components very much depends on the application and the technical details of the laser(s) used. Therefore it is very difficult and in many cases not helpful - scaling the LIDT for sub-nanosecond pulses, for example, follows different rules than scaling it for pulses with a duration from 1ns to 20 ns for example.

The table below gives a brief overview of the LIDT we specify for some of the components listed in this catalogue. Please do not hesitate to contact us if you need any further information.

Part Number	Description	LIDT
FS-FMR-25.4-6.35-HR-532-0	Fused Silica mirror, 25.4 mm diameter, 6.35 mm thick, front surface: lambda/10, 10-5 scratch-dig, rear surface: inspection polish Coating side 1: >99.7\%R @ 532nm / 0°	$>=5 \mathrm{~J} / \mathrm{cm}^{2}$ in 1 ns (2000-on-1)
FS-FMR-25.4-6.35-HR-1064-45	Fused Silica mirror, 25.4 mm diameter, 6.35 mm thick, front surface: lambda/10, 10-5 scratch-dig, rear surface: inspection polish Coating side 1: >99.3\%R @ $1064 \mathrm{~nm} / 45^{\circ}$ rand.-POL	$\begin{gathered} >=8 \mathrm{~J} / \mathrm{cm}^{2} \text { in } 1 \mathrm{~ns} \\ (2000-\text { on-1) } \end{gathered}$
FS-CPOL-25.4-1064	Fused Silica cube, optically contacted, $25.4 \mathrm{~mm} \times$ $25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm}$, lambda/ $/ 8$ transmitted wavefront distortion, 10-5 scratch-dig Immersed Coating: >99.5\%R s-POL \& >95\%T p-POL @ 1064nm /45 ${ }^{\circ}$ Outside faces: AR (<0.25\%R) @ $1064 \mathrm{~nm} / 0^{\circ}$	$>=6 \mathrm{~J} / \mathrm{cm}^{2}$ in 1 ns (2000-on-1)
FS-25.4-6.35-740-860-0	Fused Silica mirror, 25.4 mm diameter, 6.35 mm thick, front surface: lambda/10, 10-5 scratch-dig, rear surface: inspection polish Coating side 1: >99.3\%R @ 740-860nm /0․ low GDD coating	$\begin{aligned} &>= 0.75 \mathrm{~J} / \mathrm{cm}^{2} \text { in } \\ & 150 \mathrm{fs} \\ &(2000-\mathrm{on}-1) \end{aligned}$

AR-COATED WINDOWS

Specifications:
UV Fused Silica, Diameter Tolerance: +0/-0.25mm ,Thickness Tolerance: $+/-0.25 \mathrm{~mm}, \lambda / 10$ transmitted wavefront distortion, both sides 10-5 scratchdig, better than 10 arc sec parallel

All single wavelength AR coatings give $<0.25 \%$ R for the respective wavelength.
The broadband AR coatings for $245 \mathrm{~nm}-410 \mathrm{~nm}$ give (<1\%R avg.) while all other listed broadband AR coatings give (<0.5\%R avg.).

PART NUMBER

DIAMETER (D) THICKNESS (T)

COATING WAVELENGTH

FS-FWD-25.4-6.35-AR/AR-248-0	25.4 mm	6.35 mm	248 nm
FS-FWD-25.4-6.35-AR/AR-266-0	25.4 mm	6.35 mm	266 nm
FS-FWD-25.4-6.35-AR/AR-355-0	25.4 mm	6.35 mm	355 nm
FS-FWD-25.4-6.35-AR/AR-532-0	25.4 mm	6.35 mm	532 nm
FS-FWD-50.8-9.52-AR/AR-532-0	50.8 mm	9.52 mm	532 nm
FS-FWD-25.4-6.35-AR/AR-1030-0	25.4 mm	6.35 mm	1030 nm
FS-FWD-50.8-9.52-AR/AR-1030-0	50.8 mm	9.52 mm	1030 nm
FS-FWD-25.4-6.35-AR/AR-1064-0	25.4 mm	6.35 mm	1064 nm
FS-FWD-50.8-9.52-AR/AR-1064-0	50.8 mm	9.52 mm	1064 nm
FS-FWD-25.4-6.35-AR/AR-245-410-0	25.4 mm	6.35 mm	$245 \mathrm{~nm}-410 \mathrm{~nm}$
FS-FWD-50.8-9.52-AR/AR-245-410-0	50.8 mm	9.52 mm	$245 \mathrm{~nm}-410 \mathrm{~nm}$
FS-FWD-25.4-6.35-AR/AR-400-700-0	25.4 mm	6.35 mm	$400 \mathrm{~nm}-700 \mathrm{~nm}$
FS-FWD-50.8-9.52-AR/AR-400-700-0	50.8 mm	9.52 mm	$400 \mathrm{~nm}-700 \mathrm{~nm}$
FS-FWD-25.4-6.35-AR/AR-630-1100-0	25.4 mm	6.35 mm	$630 \mathrm{~nm}-1100 \mathrm{~nm}$
FS-FWD-50.8-9.52-AR/AR-630-1100-0	50.8 mm	9.52 mm	$630 \mathrm{~nm}-1100 \mathrm{~nm}$

Other sizes and specifications are available on request - please contact us.

AR-COATED WINDOWS

AR @ 248nm /0o

AR @ 355nm / 0°

AR @ 1030nm / 0°

AR @ 245-440nm / 0°

AR @ 630-1100nm / 0°

AR @ 266nm /0º

AR @ $532 \mathrm{~nm} / 0^{\circ}$

AR @ 1064nm / 0°

AR @ 400-700nm / 0°

LASER LINE MIRRORS OINCIDENCE

Specifications:
UV Fused Silica, Diameter Tolerance: $+0 /-0.25 \mathrm{~mm}$, Thickness Tolerance: +/-0.25mm, front surface: $\lambda / 10$ flatness, 10-5 scratch-dig, rear surface: inspection polish

All coatings will give $>99.7 \% \mathrm{R}$ at the respective wavelength.

PART NUMBER
DIAMETER (D) THICKNESS (T)
COATING WAVELENGTH

FS-FMR-25.4-6.35-HR-248-0	25.4 mm	6.35 mm	248 nm
FS-FMR-50.8-9.52-HR-248-0	50.8 mm	9.52 mm	248 nm
FS-FMR-101.6-12.7-HR-248-0	101.6 mm	12.7 mm	248 nm
FS-FMR-25.4-6.35-HR-266-0	25.4 mm	6.35 mm	266 nm
FS-FMR-50.8-9.52-HR-266-0	50.8 mm	9.52 mm	266 nm
FS-FMR-101.6-12.7-HR-266-0	101.6 mm	12.7 mm	266 nm
FS-FMR-25.4-6.35-HR-355-0	25.4 mm	6.35 mm	355 nm
FS-FMR-50.8-9.52-HR-355-0	50.8 mm	9.52 mm	355 nm
FS-FMR-101.6-12.7-HR-355-0	101.6 mm	12.7 mm	355 nm
FS-FMR-25.4-6.35-HR-532-0	25.4 mm	6.35 mm	532 nm
FS-FMR-50.8-9.52-HR-532-0	50.8 mm	9.52 mm	532 nm
FS-FMR-101.6-12.7-HR-532-0	101.6 mm	12.7 mm	532 nm
FS-FMR-25.4-6.35-HR-1030-0	25.4 mm	6.35 mm	1030 nm
FS-FMR-50.8-9.52-HR-1030-0	50.8 mm	9.52 mm	1030 nm
FS-FMR-101.6-12.7-HR-1030-0	101.6 mm	12.7 mm	1030 nm
FS-FMR-25.4-6.35-HR-1064-0	25.4 mm	6.35 mm	1064 nm
FS-FMR-50.8-9.52-HR-1064-0	50.8 mm	9.52 mm	1064 nm
FS-FMR-101.6-12.7-HR-1064-0	101.6 mm	12.7 mm	1064 nm

Other sizes and specifications are available on request - please contact us.

LASER LINE MIRRORS O ${ }^{\circ}$ INCIDENCE

HR @ 248nm / 0°

HR @ 355nm /0

HR @ 1030nm /0ㅁ

HR @ 266nm /0o

HR @ 532nm / 0°

HR @ 1064nm / 0°

LASER LINE MIRRORS 45° INCIDENCE

Specifications:
UV Fused Silica, Diameter Tolerance: $+0 /-0.25 \mathrm{~mm}$,Thickness Tolerance: +/-0.25mm, front surface: $\lambda / 10$ flatness, $10-5$ scratch-dig, rear surface: inspection polish

All coatings will give $299.3 \% \mathrm{R}$ in rand.-POL at the respective wavelength.

PART NUMBER

DIAMETER (D) THICKNESS (T)
COATING WAVELENGTH

FS-FMR-25.4-6.35-HR-248-45	25.4 mm	6.35 mm	248 nm
FS-FMR-50.8-9.52-HR-248-45	50.8 mm	9.52 mm	248 nm
FS-FMR-101.6-12.7-HR-248-45	101.6 mm	12.7 mm	248 nm
FS-FMR-25.4-6.35-HR-266-45	25.4 mm	6.35 mm	266 nm
FS-FMR-50.8-9.52-HR-266-45	50.8 mm	9.52 mm	266 nm
FS-FMR-101.6-12.7-HR-266-45	101.6 mm	12.7 mm	266 nm
FS-FMR-25.4-6.35-HR-355-45	25.4 mm	6.35 mm	355 nm
FS-FMR-50.8-9.52-HR-355-45	50.8 mm	9.52 mm	355 nm
FS-FMR-101.6-12.7-HR-355-45	101.6 mm	12.7 mm	355 nm
FS-FMR-25.4-6.35-HR-532-45	25.4 mm	6.35 mm	532 nm
FS-FMR-50.8-9.52-HR-532-45	50.8 mm	9.52 mm	532 nm
FS-FMR-101.6-12.7-HR-532-45	101.6 mm	12.7 mm	532 nm
FS-FMR-25.4-6.35-HR-1030-45	25.4 mm	6.35 mm	1030 nm
FS-FMR-50.8-9.52-HR-1030-45	50.8 mm	9.52 mm	1030 nm
FS-FMR-101.6-12.7-HR-1030-45	101.6 mm	12.7 mm	1030 nm
FS-FMR-25.4-6.35-HR-1064-45	25.4 mm	6.35 mm	1064 nm
FS-FMR-50.8-9.52-HR-1064-45	50.8 mm	9.52 mm	1064 nm
FS-FMR-101.6-12.7-HR-1064-45	101.6 mm	12.7 mm	1064 nm

Other sizes and specifications are available on request - please contact us.

LASER LINE MIRRORS 45° INCIDENCE

HR @ 248nm /45º

HR @ 355nm /45

HR @ 1030nm /45º

HR @ 266nm /45º

HR @ 532nm /45º

HR @ 1064nm /45 ${ }^{\circ}$

METAL COATED MIRRORS

Specifications:

N-BK7, Diameter Tolerance: +0/-0.25mm ,Thickness Tolerance:
+/-0.25mm, front surface: $\lambda / 10$ flatness, $10-5$ scratch-dig, rear surface: inspection polish

BK7-FMR-25.4-6.35-PAG	25.4 mm	6.35 mm	Protected Silver
BK7-FMR-50.8-9.52-PAG	50.8 mm	9.52 mm	Protected Silver
BK7-FMR-101.6-12.7-PAG	101.6 mm	12.7 mm	Protected Silver
BK7-FMR-25.4-6.35-PAL	25.4 mm	6.35 mm	Protected Aluminium
BK7-FMR-50.8-9.52-PAL	50.8 mm	9.52 mm	Protected Aluminium
BK7-FMR-101.6-12.7-PAL	101.6 mm	12.7 mm	Protected Aluminium

BEAMSPLITTER COATINGS

Please select the required beamsplitter coating from the table
 below, applicable to substrates up to $101.6 \mathrm{~mm}\left(4^{\prime \prime}\right)$ in diameter.

If you need beamsplitters larger than 4" (101.6mm) in diameter or if you cannot find the coating you require in the the table, please do not hesitate to contact us for a quotation. We might have a suitable optic available from stock.

COATING TYPE	WAVELENGTH - $355 \mathrm{~nm} / 532 \mathrm{~nm} / 633 \mathrm{~nm} /$ $800 \mathrm{~nm} / 1030 \mathrm{~nm}$ or 1064 nm
Partial reflector - splitting ratio $20 \% / 50 \% / 80 \% /$ $90 \% / 95 \%$ or 98% at 0° or 45° rand.-POL	Standard coating for 1" $-4 "$
Anti reflection (AR) coating for 0° or 45° rand.-POL	diameter substrate

Partial reflectors reflectivity tolerance:
+/- 3% for $20 \% \mathrm{R}$ and $50 \% \mathrm{R}$
+/- 2% for $80 \% \mathrm{R}$ and $90 \% \mathrm{R}$
+/- 1\% for 95\%R
+/-0.75\%R for 98% R
Anti-reflection coatings: $<0.25 \% \mathrm{R}$ for O° and $<1 \% \mathrm{R}$ for 45° rand.-POL

HIGH LIDT CUBE POLARISERS

Specifications:
Fused Silica cube, optically contacted, Dimensional Tolerance:
$+0 /-0.25 \mathrm{~mm}, \lambda / 8$ transmitted wavefront distortion, $10-5$ scratch-dig
Polarising coating immersed to give >99.5\%R s-POL \& >95\%T p-POL @ operational wavelength.

All outside faces AR (<0.25\%R) coated at operational wavelength.

PART NUMBER
SIZE
$25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm}$
1030nm

FS-CPOL-25.4-1064
$25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm}$
$1064 n m$

HIGH LIDT CUBE POLARISERS

FS-CPOL-25.4-248

FS-CPOL-25.4-355

FS-CPOL-25.4-1030

FS-CPOL-25.4-266

FS-CPOL-25.4-532

FS-CPOL-25.4-1064

WAVEPLATES

Specifications:
Synthetic single crystal quartz, dimensional tolerance: $+0 /-0.25 \mathrm{~mm}$ diameter, $\lambda / 10$ transmitted wavefront distortion, 10-5 scratch-dig, better than 0.5 arc sec parallel, $>85 \%$ clear aperture retardation tolerance: $\lambda / 100-\lambda / 600$ typical (dependent on wavelength)
unmounted

Both faces AR (<0.25\%R) coated at operational wavelength.

The Manx Precision Optics part number for waveplates follows the following pattern:

Z (for zero order) 2 (for half wave retardation) Operational
CQWP- or - diameter in mm - or - wavelength
M (for multiple order) 4 (for quarter wave retardation) in nm
For example: CQWP-Z-25.4-2-248 is a 25.4 mm diameter, zero order, half wave retardation waveplate for 248 nm .

STANDARD DIAMETERS

STANDARD OPERATIONAL WAVELENGTHS IN NM

248	257	266	308	355
400	405	488	514	532
633	670	694	780	800
810	1030	1047	1053	1064
1315	1319	1550		

All waveplates can also be mounted. When mounted, the 25.4 mm diameter waveplates will have a minimum 22.1 mm clear aperture and an outside mount diameter of 38.1 mm , while the mounted 50.8 mm diameter waveplates will have a minimum 44.2 mm clear aperture and an outside mount diameter of 76.2 mm .

Waveplates for other than standard operational wavelengths, different waveplate diameters and uncoated waveplates are also available - please contact us.

COMPONENTS FOR ULTRAFAST LASERS

FS-FMR-25.4-6.35-HR-740-860-0
Fused Silica mirror, $25.4 \mathrm{~mm}(+0 /-0.25 \mathrm{~mm})$ diameter, $6.35 \mathrm{~mm}(+/-0.25 \mathrm{~mm})$ thick, front surface: $\lambda / 10$ flatness, 10-5 scratch-dig, rear surface: inspection polish Coating side 1: >99.3\%R @ 740-860nm / 0° low GDD coating
Coating side 2: uncoated

FS-FMR-101.6-12.7-HR-740-860-0
Fused Silica mirror, $101.6 \mathrm{~mm}(+0 /-0.25 \mathrm{~mm})$ diameter, $12.7 \mathrm{~mm}(+/-0.25 \mathrm{~mm}$) thick, front surface: $\lambda / 10$ flatness, $10-5$ scratch-dig, rear surface: inspection polish
Coating side 1: >99.3\%R @ 740-860nm / 0°
low GDD coating
Coating side 2: uncoated

FS-FMR-50.8-9.52-HR-740-860-45P
Fused Silica mirror, $50.8 \mathrm{~mm}(+0 /-0.25 \mathrm{~mm})$ diameter, $9.52 \mathrm{~mm}(+/-0.25 \mathrm{~mm})$ thick, front surface: $\lambda / 10$ flatness, 10-5 scratch-dig, rear surface: inspection polish
Coating side 1: >99\%R @ 740-860nm / 45 p-POL
low GDD coating
Coating side 2: uncoated

FS-FMR-50.8-9.52-HR-740-860-0
Fused Silica mirror, $50.8 \mathrm{~mm}(+0 /-0.25 \mathrm{~mm})$ diameter, $9.52 \mathrm{~mm}(+/-0.25 \mathrm{~mm})$ thick, front surface: $\lambda / 10$ flatness, 10-5 scratch-dig, rear surface: inspection polish Coating side 1: >99.3\%R @ 740-860nm / 0°
low GDD coating
Coating side 2: uncoated

FS-FMR-25.4-6.35-HR-740-860-45P
Fused Silica mirror, $25.4 \mathrm{~mm}(+0 /-0.25 \mathrm{~mm})$ diameter, $6.35 \mathrm{~mm}(+/-0.25 \mathrm{~mm})$ thick, front surface: $\lambda / 10$ flatness, $10-5$ scratch-dig, rear surface: inspection polish
Coating side 1: >99\%R @ 740-860nm / 45 p-POL low GDD coating
Coating side 2: uncoated

FS-FMR-101.6-12.7-HR-740-860-45P
Fused Silica mirror, $101.6 \mathrm{~mm}(+0 /-0.25 \mathrm{~mm})$ diameter, $12.7 \mathrm{~mm}(+/-0.25 \mathrm{~mm})$ thick, front surface: $\lambda / 10$ flatness, 10-5 scratch-dig, rear surface: inspection polish Coating side 1: >99\%R @ 740-860nm / 45 ${ }^{\circ}$ p-POL low GDD coating
Coating side 2: uncoated

COMPONENTS FOR ULTRAFAST LASERS

FS-FWD-28.6-14.3-3.175-PPOL-700-900-72
Fused Silica window, $28.6 \mathrm{~mm} \times 14.3 \mathrm{~mm}(+0 /-0.25 \mathrm{~mm})$, $3.175 \mathrm{~mm}(+/-0.25 \mathrm{~mm})$ thick, $\lambda / 10$ transmitted wavefront distortion, 10-5 scratch-dig

Coating side 1: >85\%R (av.) s-POL \& >85\%T (av.) p-POL @ 700-900nm / 720
Coating side 2: AR (<2\%R avg.) @ 700-900m / 72 p-POL

FS-ECPOL-25.4-700-900
Fused Silica cube polariser, optically contacted, 1 " $\times 1$ " \times $1.38^{\prime \prime}(25.4 \mathrm{~mm} \times 25.4 \mathrm{~mm} \times 35.0 \mathrm{~mm}), \lambda / 8$ transmitted wavefront distortion, 10-5 scratch-dig, polarising coating immersed
Coating immersed: >99.5\%R sPOL \& >95\%T p-POL @
700-900nm / 0° low GDD coating
Coating side 2: AR (<0.5\%R) @ 700-900nm / 0°

FS-FWD-60.0-20.0-3.0-PPOL-700-900-72
Fused Silica window, $60.0 \mathrm{~mm} \times 20.0 \mathrm{~mm}(+0 /-0.25 \mathrm{~mm}$), $3.0 \mathrm{~mm}(+/-0.25 \mathrm{~mm})$ thick, $\lambda / 4$ transmitted wavefront distortion, 10-5 scratch-dig

Coating side 1: >85\%R (av.) s-POL \& >85\%T (av.) p-POL @ 700-900nm / 720
Coating side 2: AR (<2\%R avg.) @ 700-900m / $72^{\circ} \mathrm{p}-\mathrm{POL}$

FS-ECPOL-50.8-700-900
Fused Silica cube polariser, optically contacted, 2 " $\times 2$ " \times $2.76 " 150.8 \mathrm{~mm} \times 50.8 \mathrm{~mm} \times 70 \mathrm{~mm}), \lambda / 8$ transmitted wavefront distortion, 10-5 scratch-dig, polarising coating immersed
Coating immersed: >99.5\%R sPOL \& >95\%T p-POL @
700-900nm / 0° low GDD coating
Coating side 2: AR (<0.5\%R) @ 700-900nm / 0°

Table of Common/useful angles - Clear aperture 85\% (n=1.5)			
Diameter/mm	Thickness/mm	Angle of Incidence/ ${ }^{\circ}$	Useful Aperture/mm
25.4	6.35	45	12.87
		56	9.72
		72	5.06
50.8	9.52	45	26.93
		56	20.62
		72	10.93
76.2	12.70	45	41.00
		56	31.51
		72	16.80
101.6	12.70	45	56.27
		56	43.58
		72	23.47

Other sizes and specifications are available on request - please contact us.

COMPONENTS FOR ULTRAFAST LASERS

HR @ 740-860nm/0

PPOL-700-900-72

HR @ 740-860nm/45º p-POL

FS-ECPOL-25.4-700-900

ROOF MIRRORS

All coatings can also be applied to optically contacted roof mirrors for beam delay lines. Due to the two reflecting mirrors being optically contacted together these mirrors are comparatively easy to mount and to adjust as the two reflecting mirrors maintain their angle and orientation towards each other.

Please contact us for further information.

ETALONS

SOLID ETALONS

Specifications:
UV Fused Silica, Diameter Tolerance: +0/-0.25mm, >=80\% clear aperture, Thickness Tolerance: +/5% of thickness (up to 2 mm thickness), better than 1 arc sec parallel, $\lambda / 20$ flatness, $10-5$ scratch-dig

PART NUMBER	DIAMETER (D)	THICKNESS (
ET-FS-25.4-0.2	25.4 mm	0.2 mm
ET-FS-25.4-0.3	25.4 mm	0.3 mm
ET-FS-25.4-0.5	25.4 mm	0.5 mm
ET-FS-25.4-1.0	25.4 mm	1.0 mm
ET-FS-25.4-2.0	25.4 mm	2.0 mm

Other specifications are available. All Solid Etalons are also available with optical coatings. Please contact us for further details.

AIR-SPACED ETALONS

Please contact us for further details about air-spaced etalons. We can manufacture traditional airspaced etalons (with three spacer legs) and ring-spaced etalons (for applications that require very rigid etalons. We hold stock of 30 mm diameter (20 mm clear aperture) etalon plates and also carry a vast selection of ready-made spacers in stock.

With our in-house software we can find the best specification for your application.

VIRTUALLY IMAGED PHASE ARRAY (VIPA) ETALONS

Manx Precision Optics manufactures a wide range of VIPA Etalons. Please contact us for further information.

Technical Information Common Substrate Materials

	UV GRADE FUSED SILICA	IR GRADE FUSED SILICA (HERAEUS INFRASIL)	$\begin{aligned} & \text { SCHOTT N- } \\ & \text { BK7 } \end{aligned}$	SCHOTT SF10	CAF_{2}	SAPPHIRE
Transparency Range	190nm-2000nm Isome absorption bands within this range)	300 nm 3000 nm	400nm 1800nm	400nm 2000nm	130 nm 7000nm	400nm 4000nm
Refractive Index @						
200 nm	1.550				1.495	
300 nm	1.488	1.490			1.454	
400 nm	1.470	1.470	1.531	1.778	1.442	1.786
500 nm	1.462	1.462	1.521	1.742	1.436	1.775
1000nm	1.450	1.450	1.508	1.703	1.429	1.756
1500 nm	1.444	1.444	1.501	1.694	1.426	1.747
3000 nm		1.419			1.418	1.710

$G D D f^{2} / \mathrm{mm} @$						
400 nm	98	98	120	640	68	150
800 nm	36	36	45	160	28	58
1064 nm	16	16	22	100	17	29
1500 nm	-22	-22	-19	38	1.9	-25

TOD fs²/mm@

400 nm	30	30	41	500	19	47
800 nm	27	27	32	100	16	42
1064 nm	44	44	49	100	21	65
1500 nm	130	130	140	140	46	180

Please note that the above values are only approximate and that MPO cannot guarantee their accuracy.

Technical Information
 Homogeneity, Striae, Bubble Content

INHOMOGENEITY CLASS (PER ISO 10110, PART 4)

0	$+/-50$
1	$+/-20$
2	$+/-5$
3	$+/-2$
4	$+/-1$
5	$+/-0.5$

$+/-50$
+/-20
$+/-5$
$+/-2$
$+/-1$
+/-0.5

MAX. VARIATION OF THE REFRACTIVE INDEX WITHIN

DENSITY OF STRIAE CAUSING AN OPTICAL PATH DIFFERENCE OF AT LEAST 30NM IN \%
$<=10$
<=5
$<=2$
$<=10$

Striae free - 30nm path difference rule does not apply

ISO 10110 Part 3 defines the bubble content of optical components. In drawings, it is denoted by code number 1 in the form of

1/NxA

where N is the number of of bubbles and inclusions of the maximum permitted size as defined in the ISO standard while A denotes the grade number measuring the size of the bubbles. A equals the square root of the projected area of the largest permissible bubble in mm. As long as the the sum of the projected area of all bubbles does not exceed $N x A^{2}$ (= maximum total area), a larger number of bubbles of a smaller size is allowed.

Care must be taken, as concentrations of bubbles with more than 20% of of the number of allowed bubbles in any one test region are not allowed. Where the total number of bubbles is less than 10, 2 or more bubbles within any 5% sub-area are also classed as a concentration and are therefore not permitted.

Please contact MPO for further information. We are happy to assist you in choosing the correct material quality for your application.

Technical Information Surface Cleanliness

The industry standard for surface cleanliness is defined through either ISO or MIL specifications. While we can work to both standards, the surface cleanliness of our catalogue optics are defined by MIL specifications.

SCRATCH DENOMINATION

80	0.08	0.0031
60	0.06	0.0024
40	0.04	0.0016
20	0.02	0.0008
10	0.01	0.0004
5	0.005	0.0002

PLEASE NOTE: THE TOTAL LENGTH OF ALL SCRATCHES OF MAXIMUM SIZE MUST NOT EXCEED 25% OF THE DIAMETER OF THE CLEAR APERTURE

DIG DENOMINATION

MAXIMUM
DIAMETER IN MM
0.50
0.40
0.30
0.20
0.008
0.10
0.004

5
0.05
0.002

Technical Information Coatings

- In dielectric coatings it is always easier to reflect s-polarised light and transmit ppolarised light
- Using a coating designed for 0° under and angle of incidence of 45° will shift the centre of the coating down by approximately 10%.
- For pulse lengths down to 0.5 s the LIDT scales with the square root. For example, if the LIDT for a 10 ns pulse is known, divide it by the square root of (10/3) to work out the LID for a 3ns pulse.
- For pulse lengths shorter than 0.5 ns the above rule of thumb does not work reliably. Please contact us for further information.
- Current research suggests that when working with short pulses (in the ps and fs regime), the LIDT depends very much on the electron band gap in the respective dielectric materials while the deposition technique does not play any significant role as far as the coating is cosmetically very good. If you would like to know more, please do not hesitate to contact MPO - we enjoy technical discussions.
- The table below lists a number of commonly used coating materials

MATERIAL	REFRACTIVE INDEX (AT 550NM)	TRANSMITTANCE RANGE
SiO_{2}	1.45	$185 \mathrm{~nm}-9000 \mathrm{~nm}$
$\mathrm{Al}_{2} \mathrm{O}_{3}$	1.64	$190 \mathrm{~nm}-7000 \mathrm{~nm}$
HfO_{2}	1.98	$240 \mathrm{~nm}-8000 \mathrm{~nm}$
$\mathrm{Ta}_{2} \mathrm{O}_{5}$	2.1	$350 \mathrm{~nm}-10000 \mathrm{~nm}$
TiO_{2}	2.25	$400 \mathrm{~nm}-8000 \mathrm{~nm}$
$\mathrm{Nb}_{2} \mathrm{O}_{5}$	2.3	$400 \mathrm{~nm}-8000 \mathrm{~nm}$
MgF_{2}	1.38	$150 \mathrm{~nm}-8000 \mathrm{~nm}$

Please note that the above values are only approximate and that MPO cannot guarantee their accuracy.

Technical Information Etalons

- Air-spaced etalons are more thermally stable than solid etalons
- The larger the free spectral range of an air-spaced etalon (i.e. the smaller the air-gap), the more mechanically stable it becomes. Air gaps as small as $20 \mu \mathrm{~m}$ are feasible.
- Air-spaced etalons can be pressure- and angle-tuned.
- Solid etalons are more compact and mechanically stable than air-spaced ones, but air-spaced etalons generally have a better effective finesse.
- The range of achievable free spectral ranges for air-spaced etalons is wider than for solid ones.
- The two reflection coatings in air-spaced etalons are generally perfectly matched as both plates are coated together, while solid etalons require two different coatings runs, meaning a higher risk of coating mis-match, especially for broad-band coatings.
- Reflectivity Finesse F of an etalon:

$$
F=\frac{\pi \sqrt{R}}{(1-R)}
$$

R: Coating Reflectivity

- Free Spectral Range (FSR) of an etalon:

$$
F S R=\frac{\lambda^{2}}{2 n d} \quad \begin{aligned}
& \lambda: \text { wavelength } \\
& \mathrm{n}: \text { refractive index } \\
& \mathrm{d}: \text { spacing distance }
\end{aligned}
$$

- Full-width at half maximum (FWHM) of an etalon:

$$
F W H M=\frac{F S R}{F}
$$

Technical Information Equations

Speed of Light: $c=299792458 \mathrm{~km} / \mathrm{s}$
Snell's Law:

$$
\frac{\sin \alpha}{\sin \beta}=\frac{n_{2}}{n_{1}}
$$

Focal length of a curved mirror:

$$
f=\frac{r}{2} \quad \text { r: radius of curvature }
$$

Lensmaker's Equation (approximate focal length of a thin lens):

$$
\frac{1}{f} \approx(n-1)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
$$

f: focal length, R_{1}, R_{2} : radii of curvature of the lens surfaces

Fresnel reflection of a surface at O° :

$$
R=\frac{n_{2}-n_{1}}{n_{2}+n_{1}}
$$

Optical Density OD:

$$
O D=\log _{10} \frac{1}{T} \quad \text { T: Transmission }
$$

f-stop number N :

$$
N=\frac{f}{D} \quad \begin{aligned}
& \text { f: focal length } \\
& \text { D: effective aperture }
\end{aligned}
$$

Manx Precision Optics - Quality Policy

Manx Precision Optics Ltd. operates to BS EN ISO 9001:2008 offering high quality optical components, systems and integrated solutions to customers within the photonics industry.

Manx Precision Optics Ltd. focuses on meeting customer requirements through the provision of sound advice. The company encourages all employees to participate in a process of continuous improvement and to adopt a systematic approach to processes in manufacturing and problem solving, working in partnership with its suppliers.

Manx Precision Optics Ltd. adopts the following principles for its operations:

- Creation and maintenance of trusted relationships with suppliers and customers
- Focus on customer requirements and meeting commitments made
- Encourage a work ethic that ensures all employees feel responsible for quality and maintain the highest level of craftsmanship
- Meeting legal and statutory requirements
- Adopting a proactive approach to continual improvement of its quality systems
- Setting a quality objectives program to encourage continuous improvement

Dr Helmut Kessler
Managing Director
14/01/2015

 TE LINTELO SYSTEMS BV photonics is our passion!

lasers

fiber optics
optical components interferometry opto-electronics equipment
light metrology

Te Lintelo Systems

Since 1985 Te Lintelo Systems represent prominent suppliers from all over the world for the Benelux countries with well-educated engineers, experience and knowledge.

Over the years we became the specialist in the field of Light metrology, optoelectronic equipment, Laser beam characterization and positioning, Optics, fiber optics and lasers.
Together with our high end suppliers we have the answer for you.

Te Lintelo Systems is your reliable source and long term partner. Service on all levels is for us our daily business. Our team is fully equipped to assist you with finding your best optical business solution. Let's get in touch!

