Precision fair 2017 Te Lintelo Systems presents:

Lasers, a bright future!

Where can we find lasers?

Lasers are used in:

- Media players (CD/DVD/Blu ray)
- Telephone/internet exchange network
- Barcode scanners
- Laser printers
- Medical equipment (tatoo & hair removal, skin treatments, removing kidney stones)
- Material processing (cutting and welding)
- Military and law enforcement (laser guns).
- Scientific application

1) Applications

Laser systems addresses many different applications:

- Interferometry
- Spectroscopy
- Flow Cytometry
- Live Cell Imaging
- Holography
- Optogenetics
- Material processesing

 Wide range of different wavelengths and power levels

TE LINTELO SYSTEMS BV LASOS

photonics is our passion! LASOS

For worldwide photonics

- Wide range of different wavelengths and power levels
- Fundamental mode beam quality, M² close to 1
- Narrow linewidth and well defined center wavelength
- Highest possible power stability independent of environmental conditions
- Low noise especially at fixed frequencies
- Fast digital ("zero photon" to operation power) and analog modulation
- Short pulse lasers: pulse length <100ps (FWHM)

TE LINTELO SYSTEMS BV LASOS

photonics is our passion! LASOS

For worldwide photonics

- Wide range of different wavelengths and power levels
- Fundamental mode beam quality
 M² close to 1
- Narrow linewidth and well defined center wavelength
- Highest possible power stability independent of environmental conditions
- Low noise especially at fixed frequencies
- Fast digital ("zero photon" to operation power) and analog modulation
- Short pulse lasers: pulse length <100ps (FWHM)

Smaller bandwidth of excitation light blocking optics → improved system performance

 λ_{center} +/- 0,3nm $\Delta\lambda$ << 0,1nm

Commercially available FP diodes

 λ center +/- 4nm $\Delta\lambda$ < 2nm

Wavelength locked diodes

 $\lambda_{\rm center}$ +/- 0,5nm $\Delta\lambda$ < 0,2nm

- Wide range of different wavelengths and power levels
- Fundamental mode beam quality
 M² close to 1
- Narrow linewidth and well defined center wavelength
- Highest possible power stability independent of environmental conditions
- Low noise especially at fixed frequencies
- Fast digital ("zero photon" to operation power) and analog modulation
- Short pulse lasers: pulse length <100ps (FWHM)</p>

- Temperature range 15 °C 35°C
- Power control mode
- Almost insensitive to temperature changes

- Wide range of different wavelengths and power levels
- Fundamental mode beam quality
 M² close to 1
- Narrow linewidth and well defined center wavelength
- Highest possible power stability independent of environmental conditions
- Low noise especially at fixed frequencies
- Fast digital ("zero photon" to operation power) and analog modulation
- Short pulse lasers: pulse length <100ps (FWHM)

- RMS <0,02%
- Signals fft < -78dB

- Wide range of different wavelengths and power levels
- Fundamental mode beam quality
 M² close to 1
- Narrow linewidth and well defined center wavelength
- Highest possible power stability independent of environmental conditions
- Low noise especially at fixed frequencies
- Fast digital ("zero photon" to operation power) and analog modulation
- Short pulse lasers: pulse length <100ps (FWHM)

- Rise and fall times of direct modulated diodes comparable to AOM and AOTF (<1µs)
- Modulation depth still smaller
- General demand on faster modulation
- "Diode Laser" in the "Yellow Gap"

TE LINTELO SYSTEMS BV LASC photonics is our passion! For worldwide photonics is our passion.

- Wide range of different wavelengths and power levels
- Fundamental mode beam quality
 M² close to 1
- Narrow linewidth and well defined center wavelength
- Highest possible power stability independent of environmental conditions
- Low noise / especially at fixed frequencies
- Fast digital ("zero photon" to operation power) and analog modulation
- Short pulse lasers

- Pulse length <100ps (FWHM)</p>
- Cw / ps laser
- Inexpensive, almost same footprint as cw laser
- Can easily be integrated in multi laser light source

FLIM (Fluorescence-Lifetime Imaging)

TCSPC (Time correlated single-photon counting)

Courtesy of Becker & Hickl GmbH

Temporal decay of fluorescence is measured

Short pulse laser sources necessary:

- Mode coupled solid-state laser
- Supercontinuum laser (pulsed white light)
- ps diode laser (50-100ps typically)

Additional parameter:

- Signal separation of different fluorophores
- Many other information,...

Stabilised Helium-Neon Laser

- HeNe-Laser is mostly used in high precision measurements e.g. Interferometric measurements

- → Power must be constant
 - Signal to noise ratio
- → Frequency must be constant
 - Interference pattern depends on wavelength

Laser Scanning Confocal Microscope

The confocal principle

Courtesy of Carl Zeiss Microscopy GmbH

Laser Scanning Confocal MicroscopeWhy confocal?

TE LINTELO SYSTEMS BV LASOS

photonics is our passion! LASOS

For worldwide photonics

- Plug-and-Play
- Easy-to-use platform
- Customization and Modification
- Field flexibility
- Service-friendliness

- Up to 6 different laser sources
- Highest flexibility each wavelength individually changeable and upgradeable in the field
- Lasting and stable quality of coupling/outcoupling
- Optional integration of AOM/AOTF for DPSS laser modulation capability

- Maximal resistance to vibration
- Plug-and-Play
- Alignment-free

Direct modulation of output power by acousto optical modulation (AOM)

- Varying the optical power by changing RF power.
- Fast, because of acoustic velocity in crystal.
- No moveable parts, therefore long lifetime.
- Diffraction efficiency can be as high as >99%
- Design changes allow to use it as a deflector or filter.

WHY MEASURE POWER?

THERMOPILE DISK

r = radius of beam R = Radius of disk

ENERGY METER THEORY

Pyroelectric crystals

What is a pyroelectric crystal?

"The property of certain crystals to produce a state of electric polarity by a change of temperature."

> Principle:

- Laser pulse heats the crystal
- Crystal changes its polarity
- 3. Current flows through the electrodes

Energy meter theory

Pyroelectric crystals

- A pyroelectric crystal is a passive component: it will only generate voltage when subjected to a change in temperature
- ➤ The generated voltage is proportional to temperature change rate
- ightharpoonup To be specific, $V \propto \frac{dT}{dt}$
- When there is no temperature <u>change</u>, there is therefore no voltage generated
- Calibration relates amount of voltage generated to energy value of laser pulse

SAFETY RULES

- Always wear safety goggles
- Keep your hands away from the optical table and beam path
- Never put your eyes at the height of the beam propagation
- Always close the safety curtains to avoid exposing other people to the laser beam
- Better safe than sorry, you only have 1 pair of eyes.

TE LINTELO SYSTEMS BV photonics is our passion!

Te Lintelo Systems BV

Mecurion 28 A

6903 PZ Zevenaar

The Netherlands

1 +31 316 340804

www.tlsbv.nl • contact@tlsbv.nl

